Epidemic outbreak prediction by machine learning and artificial intelligence in medical education

What Is Machine Learning?

- A branch of artificial intelligence, concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data.
- Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.
- Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to learn from **experience E** with respect to some **task T** and some **performance measure P**, if its performance on T, as measured by P, improves with experience E.

What Is Machine Learning? Example

- "A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."
- Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam.
 - Classifying emails as spam or not spam ---> Task T
 - Watching you label emails as spam or not spam ---> Experience E
 - The number (or fraction) of emails correctly classified as spam/not spam --->
 Performance measure P

Slide credit: Andrew Ng

ML Applications

Slide credit: Lior Rokach

The Learning Setting

- Imagine learning algorithm is trying to decide which loan applicants are bad credit risks.
- Might represent each person by n features. (e.g., income range, debt load, employment history, etc.)
- Take sample S of data, labeled according to whether they were/weren't good risks.
- Goal of algorithm is to use data seen so far produce good prediction rule (a "hypothesis") h(x) for future data.

Slide credit: Avrim Blum 5

The learning setting example

%	recent	other	mmp/	high	Good
down	delinq?	accts	inc	debt?	risk?
10	N	Υ	0.32	N	Y
10	Ν	Ν	0.25	Y	Y
5	Y	Ν	0.30	Ν	Ν
20	Ν	Y	0.31	Ν	Υ
5	Ν	Ν	0.42	Ν	Ν
10	Y	Ν	0.38	Y	Ν
10	N	N	0.25	Y	Y

- Given this data, some reasonable rules might be:
 - Predict YES iff (!recent deling) AND (%down > 5).
 - Predict YES iff 100*[mmp/inc] 1*[%down] < 25.

• ...

Slide credit: Avrim Blum

Big Questions

(A) How might we automatically generate rules that do well on observed data? ---> Algorithms

(B) What kind of confidence do we have that they will do well in the future? ---> Performance Evaluation

Slide credit: Avrim Blum

The machine learning framework

Training: given a training set of labeled examples $\{(x_1,y_1), ..., (x_n,y_n)\}$, estimate the prediction function f by minimizing the prediction error on the training set

• Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

ML in a Nutshell

- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

Representation

- Decision trees
- Sets of rules / Logic programs
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines

•

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence

• ...

Optimization

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming

Machine Learning Algorithms

- Supervised Learning
 - Training data includes desired outputs
- Unsupervised Learning
 - Training data does not include desired outputs
- Semi-supervised learning
 - Training data includes a few desired outputs
- Others: Reinforcement learning, recommender systems

Supervised Learning

Slide credit: Yi-Fan Chang

Supervised learning process: two steps

- Learning (training): Learn a model using the training data
- Testing: Test the model using unseen test data to assess the model accuracy

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}},$$

step 1. Training step 2. Testing

Slide credit: Bing Liu

15

Unsupervised Learning

Learning patterns from unlabeled data

- Tasks
 - understanding and visualization
 - anomaly detection
 - information retrieval
 - data compression

Unsupervised Learning (Cont.)

Slide credit: Yi-Fan Chang

Supervised Learning (Cont.)

- Supervised learning categories and techniques
 - Linear classifier (numerical functions)
 - Parametric (Probabilistic functions)
 - Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov models (HMM),
 Probabilistic graphical models
 - Non-parametric (Instance-based functions)
 - K-nearest neighbors, Kernel regression, Kernel density estimation, Local regression
 - Non-metric (Symbolic functions)
 - Classification and regression tree (CART), decision tree
 - Aggregation
 - Bagging (bootstrap + aggregation), Adaboost, Random forest

Unsupervised Learning (Cont.)

- Unsupervised learning categories and techniques
 - Clustering
 - K-means clustering
 - Spectral clustering
 - Density Estimation
 - Gaussian mixture model (GMM)
 - Graphical models
 - Dimensionality reduction
 - Principal component analysis (PCA)
 - Factor analysis

Supervised Learning: Linear Classifier

$$g(x_n) = sign(w^T x_n)$$

, where w is an d-dim vector (learned)

- Find a *linear function* to separate the classes
- Techniques:
 - Perceptron
 - Logistic regression
 - Support vector machine (SVM)
 - Ada-line
 - Multi-layer perceptron (MLP)

Supervised Learning: Non-Linear Classification

$$x_{n} = [x_{n1}, x_{n2}]$$

$$x_{n} = [x_{n1}, x_{n2}, x_{n1} * x_{n2}, x_{n1}^{2}, x_{n2}^{2}]$$

$$g(x_{n}) = sign(w^{T}x_{n})$$

• Techniques:

- Support vector machine (SVM)
- Neural Networks
- ...

Supervised Learning: Decision Trees

Should I wait at this restaurant?

Decision Tree Induction

(Recursively) partition examples according to the *most important* attribute.

Key Concepts

- entropy
 - impurity of a set of examples (entropy = 0 if perfectly homogeneous)
 - (#bits needed to encode class of an arbitrary example)
- information gain
 - expected reduction in entropy caused by partitioning

Decision Tree Induction: Decision Boundary

Supervised Learning: Neural Networks

- Motivation: human brain
 - massively parallel (10¹¹ neurons, ~20 types)
 - small computational units with simple low-bandwidth communication (10¹⁴ synapses, 1-10ms cycle time)
- Realization: neural network
 - units (≈ neurons) connected by directed weighted links
 - activation function from inputs to output

Neural Networks (continued)

$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4)$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$

Neural Network = parameterized family of nonlinear functions types

Neural Network Learning

- Key Idea: Adjusting the weights changes the function represented by the neural network (learning = optimization in weight space).
- Iteratively *adjust weights* to reduce *error* (difference between network output and target output).
- Weight Update
 - perceptron training rule
 - linear programming
 - delta rule
 - backpropagation

Neural Network Learning: Decision Boundary

single-layer perceptron

multi-layer network

Supervised Learning: Support Vector Machines

- Kernel Trick: Map data to higher-dimensional space where they will be linearly separable.
- Learning a Classifier: optimal linear separator is one that has the *largest margin* between positive examples on one side and negative examples on the other

29

Support Vector Machines: Decision Boundary

Supervised Learning: Nearest Neighbor Models

• *Key Idea*: Properties of an input *x* are likely to be *similar* to those of points in the *neighborhood* of *x*.

• Basic Idea: Find (k) nearest neighbor(s) of x and infer target attribute value(s) of x based on corresponding attribute value(s).

Nearest Neighbor Model: Decision Boundary

Evaluating classification methods

Predictive accuracy

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}}$$

- Efficiency
 - time to construct the model
 - time to use the model
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability:
 - understandable and insight provided by the model
- Compactness of the model

Slide credit: Bing Liu 33

Performance Evaluation

- Randomly split examples into training set U and test set V.
- Use training set to learn a hypothesis *H*.
- Measure % of V correctly classified by H.
- Repeat for different random splits and average results.

Generalization

- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- Underfitting: model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

Bias-Variance Trade-off

 Models with too few parameters are inaccurate because of a large bias (not enough flexibility).

 Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

Slide credit: L. Lazebnik

Machine Learning for Healthcare

Applying Machine Learning to Healthcare

- Healthcare sector is being transformed by the ability to record massive amounts of information
- Machine learning provides a way to automatically find patterns and reason about data
- It enables healthcare professionals to move to personalized care known as precision medicine.

 Adoption of Electronic Health Records (EHR) has increased 9x since 2008

- Large datasets
 - MIT Laboratory for Computational Physiology de-identified health data from ~40K critical care patients
 - Demographics, vital signs, laboratory tests, medications, notes, ...
 - Available data on nearly 230 million unique patients since 1995

Slide credit: David Sontag 40

Diversity of digital health data

- Standardization
 - Diagnosis codes: ICD-9 and ICD-10 (International Classification of Diseases)
 - Laboratory tests: LOINC codes
 - Pharmacy: National Drug Codes (NDCs)
 - Unified Medical Language System (UMLS): millions of medical concepts

Industry interest in AI & healthcare

Slide credit: David Sontag

What can machine learning do for the healthcare industry?

- Improve accuracy of diagnosis, prognosis, and risk prediction.
- Reduce med
- Model and
- Optimize h flow.
- Identify pa
- Discover ne

Improve quality of care and population health outcomes, while reducing healthcare costs.

nd patient

n medicine.

t practices).

Automate detection of relevant findings in pathology, radiology, etc.

Example Application: Improve accuracy of diagnosis and risk prediction

- New methods are developed for chronic disease risk prediction and visualization.
- These methods give clinicians a comprehensive view of their patient population, risk levels, and risk factors, along with the estimated effects of potential interventions.

Example Application: Optimize hospital processes

• By early and accurate prediction of each patient's **Diagnosis Related Group** (DRG), demand for scarce hospital resources such as beds and operating rooms can be better predicted.

Example Application: Automate detection of relevant findings

 Pattern detection approaches have been successfully applied to detect regions of interest in digital pathology slides, and work surprisingly well to detect cancers.

• Automatic detection of anomalies and patterns is especially valuable when the key to diagnosis is a tiny piece of the patient's health data.

Example Application: Breast Cancer Diagnosis

Research by Mangasarian, Street, Wolberg

Breast Cancer Diagnosis Separation

Research by Mangasarian, Street, Wolberg

Example Application: ICU Admission

- An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients.
- A decision is needed: whether to put a new patient in an intensivecare unit.
- Due to the high cost of ICU, those patients who may survive less than a month are given higher priority.
- Problem: to predict high-risk patients and discriminate them from low-risk patients.

What is unique about ML in healthcare?

- Life or death decisions
 - Need robust algorithms
 - Checks and balances built into ML deployment
 - (Also arises in other applications of AI such as autonomous driving)
 - Need fair and accountable algorithms
- Many questions are about unsupervised learning
 - Discovering disease subtypes, or answering question such as "characterize the types of people that are highly likely to be readmitted to the hospital"?
- Many of the questions we want to answer are causal
 - Naïve use of supervised machine learning is insufficient

What makes healthcare different?

- Often very little labeled data (e.g., for clinical NLP)
 - Motivates semi-supervised learning algorithms
- Sometimes small numbers of samples (e.g., a rare disease)
 - Learn as much as possible from other data (e.g. healthy patients)
 - Model the problem carefully
- Lots of missing data, varying time intervals, censored labels

What makes healthcare different?

- Difficulty of de-identifying data
 - Need for data sharing agreements and sensitivity
- Difficulty of deploying ML
 - Commercial electronic health record software is difficult to modify
 - Data is often in silos; everyone recognizes need for interoperability, but slow progress
 - Careful testing and iteration is needed